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Abstract Body 
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Background / Context:  
 Despite the theoretical effectiveness of stratification methods such as those based on the 
propensity score (PS), the opacity and uniqueness of most enacted treatment selection 
mechanisms in nonexperimental social science research make it difficult to know a priori the 
appropriate covariates on which to stratify. Yet, because the plausibility of strong ignorability of 
the treatment assignment and corresponding inferences are highly dependent upon the selected 
covariates, a central concern in pretreatment stratification methods is how to which covariates to 
stratify on (e.g. Cook, Steiner & Pohl, 2009). In particular, stratifications that are too coarse (e.g. 
too few relevant covariates) likely gives rise to biased treatment estimates (e.g. Smith & Todd, 
2005). Conversely, the inclusion of bias amplifying or extraneous covariates has also been 
shown to import extra bias and degrade the efficiency of the treatment effect estimator (e.g. 
Brookhart et al., 2006; Pearl, 2010; Wooldridge, 2009). For instance, stratifying on instrumental 
variables and covariates with colliding paths potentially increases bias and variance over 
unstratified estimates. Of relevance to this study is collider bias originating from stratification on 
pretreatment variables thought to form an M structural design (Figure 1). Given a treatment, Z, 
an observed pretreatment covariate, X, two unobserved and independent pretreatment covariates, 
U1 and U2, and an outcome, Y, the covariate X is a collider and may amplify bias when assessing 
the effect of the treatment on the outcome. That is, when two variables (e.g. U1 and U2) share a 
common effect (e.g. X), stratification on that effected variable (e.g. X) induces a statistical 
relation between otherwise independent factors (e.g. U1 and U2) (Figure 2). In turn, because these 
unobserved independent covariates are also causes of the treatment and outcome, stratifying on 
only X further induces a spurious relation between the treatment and outcome beyond the true 
treatment effect (i.e. collider bias). However, because the observed covariate, X, is hypothesized 
to be a confounder (e.g. Figure 3), concerns about confounding bias frequently dominate the 
potential for collider bias from unobserved bias amplifying covariates (e.g. Greenland, 2003). As 
a result, modal advice has been to stratify along a rich combination of observed covariates (e.g. 
Rubin & Thomas, 1996; Stuart & Rubin, 2007; Stuart, 2010). Yet, recent empirical 
investigations have demonstrated sizeable bias potentially corresponding to such collider bias 
especially with saturated stratifications (Whitcomb, Schisterman, Perkins & Platt, 2009; Steiner, 
Cook, Shadish & Clark, 2010). Such applications indicate the complexity of applying principles 
and suggest that there is much more to bias reduction than simply stratifying on many covariates. 
 
Purpose / Objective / Research Question / Focus of Study: 
 Of particular import to this study, is collider bias originating from stratification on 
pretreatment variables forming an embedded M or bowtie structural design (Figure 4). That is, 
rather than assume an M structural design which suggests that X is a collider but not a 
confounder, we adopt what we consider to be a more reasonable position and that is X is both a 
collider and confounder. Accordingly, in this study we examined the extent to which confounder 
induced bias exceeds collider induced bias. To inform this tradeoff, we quantified the bias from 
two simple linear model estimators which are asymptotically equivalent to stratification and 
matching on these variables (alone or with the propensity score) (e.g. Pearl, 2009). More 
specifically, we examined this tradeoff by quantifying the net bias induced from adjusting for X 
versus the net bias from ignoring it. As a result, stratifying on X removes confounding bias but 
induces collider bias whereas ignoring X alleviates collider bias but invokes confounding bias. 
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For that reason, this study quantified the threshold by which collider and confounder bias due to 
a hypothesized confounder (e.g.  X) is equal. The intention is to provide pragmatic guidance as to 
the consequences of and the decision to stratify on covariates hypothesized to be confounders 
and/or colliders. 
 
Setting: 
(May not be applicable for Methods submissions)  
 
Population / Participants / Subjects:  
(May not be applicable for Methods submissions) 
 
Intervention / Program / Practice:  
(May not be applicable for Methods submissions)  
 
Significance / Novelty of study: 
 To a large extent there are competing theories and evidence as to which set of variables 
one should stratify on to approximate the strong ignorability of treatment assignment (e.g. Rubin, 
2009; 2001; Pearl, 2010; Steiner et al., 2010). One (experimentalist) perspective has primarily 
suggested stratifying along a rich set of variables to produce covariate balance across treatment 
groups on all observed variables. In opposition, other (structuralist) perspectives are particularly 
concerned with the fundamental structure of germane (un)observed variables (e.g. Pearl, 2010). 
The surrounding empirical literature has demonstrated support for both sides (e.g. Steiner et al., 
2010; Rubin, 2001). In this study, we take on explication of the conditions under which 
confounding bias dominates collider bias. In particular, this study develops an approach to 
quantify the conditions under which the net bias (confounding plus collider) is reduced through 
stratification on a confounder/collider. 
 
Statistical, Measurement, or Econometric Model:  
 In assessing the unique relationship between Z and Y given in the directed acyclic graph 
in Figure 4, we may choose to stratify on X or not. As X is both a collider and confounder, either 
approach will address one form of bias but induce another. In order to assess this exchange, we 
might quantify the change in bias by identifying the threshold by which the potential collider 
bias introduced by including X exceeds the observed confounding bias induced by omitting X.  
That is, we might construct and stratify on a propensity score with or without variable X or with 
asymptotic equivalence (e.g. Pearl, 2009) we might consider the equations   
  (1.1) 

  (1.2) 

Given the variable relationships in Figure 4, the estimator  in equation (1.1) addresses the 
confounding bias brought about by X, but induces collider stratification bias as a result of the 
conditional relationships with the unobserved variables. In contrast, the estimator  in equation 
(1.2) neglects the confounding bias but circumvents the collider bias. Because in practice we 
have not measured the unobserved variables, we cannot stratify on the unobserved variables and 
X to address both confounding and collider bias. However, because the introduction of collider 
bias is limited by the observed relationships of X with Z and Y, we can assess the change in net 
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bias. Upon stratifying on X, confounding bias has been eliminated and the remaining bias is that 
of the collider  
  (1.3) 

Similarly, bias from the unstratified estimator is a result of confounding bias only 
  (1.4) 

The difference between collider and confounding bias between the estimators is 
  (1.5) 

This difference (1.5) can take on the following four situations 

  (1.6) 

For brevity we focus on the most common situation where there is a positive treatment effect and 
the confounding variables are positively correlated with the treatment and outcome such that 
(1.1) underestimates and (1.2) overestimates the treatment effect as summarized in (2) in (1.6). 
Rewriting (2) in (1.6) as the least squares estimators using correlation coefficients  

  (1.7) 

where ρ and σ indicate the appropriate correlation and standard deviation. This equation 
expresses the change in net bias from both colliding and confounding. Setting the bias terms 
equal to each other, we can obtain a threshold by which colliding and confounding bias are 
similar: 

  (1.8) 

Equation (1.8) depicts when one form of bias dominates the other. For instance, when 

  (1.9) 

the net bias from confounding will exceed the net bias from colliding and we should stratify on 
X. Similar derivations can establish a threshold with respect to evaluative measures which further 
incorporate the variability of the estimator such as the mean-squared error. More specifically, 
  (1.10) 

Rewriting (1.10) for both estimators using correlations, we have the change in MSE as 
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  (1.11) 

where similar comparisons and thresholds can be made. 
 
Research Design: 
(May not be applicable for Methods submissions) 
 
Data Collection and Analysis:  
(May not be applicable for Methods submissions) 
 
Findings / Results:  
 Figure 5 graphically displays the change in bias ( ) as a function 
of the treatment-confounder (Z-X) correlation for several outcome-confounder (Y-X) correlations 
using a medium treatment effect size of 0.5 and standardized variables. More specifically, 
negative 'Change in Bias' values indicate situations where it is better to stratify on X because 
estimators based on this stratification tend to offer a less biased estimate than those which 
exclude X. Evident from the example depicted in Figure 5, it is often more important to address 
confounding bias by stratifying on X than collider bias by excluding X. The exception comes 
when outcome-confounder (Y-X) correlation exceeds that of the outcome-treatment (Y-Z) and the 
treatment-confounder (Z-X) correlation is very high (>0.90). Similar plots of different effect sizes 
indicated that the outcome-confounder tends to need correlations similar or greater than the 
outcome-treatment correlations for collider bias to be of practical concern in structural systems 
that contain embedded M-relationships. 
 
Usefulness / Applicability of Method:  
 To ground the relevance of this approach, we discuss a simplified application assessing 
the effect of teacher instructional practice in reading on student reading achievement while 
adjusting for teachers' reading knowledge. We very briefly frame the study and describe the 
potential for both confounder and collider bias. With renewed emphasis on observation of 
enacted classroom process (e.g. teaching) as a central feature of research designs, there has been 
substantial development of a diverse set of standardized classroom observations systems 
focusing on direct assessments (e.g., Cameron, Connor, & Morrison, 2005). The expectation is 
that such systems will help uncover reliable evidence concerning the processes which drive 
teachers' contribution to students' growth. To address variation across and within teachers in the 
nature their instruction, the Assessment of Pedagogical Knowledge of Teachers of Reading study 
(APK) sought to investigate what instructional quality is and the extent to which it actually 
matters. In particular, the study focused on measuring instruction in first through third grade 
teachers from urban school districts in Michigan using several observation methods. Further, the 
study centered on identifying and summarizing those instructional practices that are associated 
with students’ gains in reading over the course of a year in early literacy instruction. To capture 
the content, style, and delivery of each lesson, the study developed an observation system which 
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had trained observers record observable instructional actions (IAs) within individual lessons. IAs 
included lesson features like giving directions, assessing student work, providing opportunities 
for students to participate or teacher soliciting student participation. Further, because teachers 
had undergone extensive professional development, the study assessed teachers' reading 
knowledge with emphasis on the knowledge about reading teachers draw on to teach early 
reading. 
 The part we focus on is the association of teachers' instructional reading practice on 
students' reading achievement when adjusting for teachers' reading knowledge. In particular, 
because we suspected that teachers' knowledge impacts students' achievement both through 
instructional reading practice as well as through other classroom instructional domains, teachers' 
reading knowledge may represent an important confounding variable. However, teachers' reading 
knowledge may also represent a colliding variable. For example, teachers' reading knowledge 
and instructional reading practice may have a common cause such as repeated exposure to 
professional development in reading. Similarly, teachers' reading knowledge and students' 
reading achievement may also share a common source such as teachers' general knowledge or 
ability to communicate effectively. Because it is suspected that teachers' reading knowledge 
informs instructional practice in reading as well as students reading outcomes through other 
channels, there is a potential for confounding bias if teachers' reading knowledge is omitted. 
Similarly, because we measured teachers' reading knowledge but did not appropriately measure 
professional development and general knowledge, there is a potential for collider bias when 
controlling for teachers' reading knowledge. This hypothesized relationship is depicted in Figure 
6 such that it forms an embedded M or bowtie structure. To assess the potential tradeoff between 
confounder and collider bias, we can apply the above derivations to the empirical data. The 
correlation between the outcome, the Iowa Test of Basic Skills-Reading Comprehension, and the 
measure of instructional reading practice, was approximately 0.2. Similarly, the correlation 
between the outcome and our measure of teachers' reading knowledge was about 0.1 whereas the 
teachers' reading knowledge was correlated with practice at 0.4. Applying the above thresholds, 
the observed data strongly suggests we should make adjustments for teachers' reading knowledge 
as the potential reduction in bias from its adjustment likely exceeds the potential collider bias 
introduced by not adjusting for it (Figure 7). More specifically, in absence of the true treatment 
effect we graphed the change in bias curve for effect sizes of 0.1, 0.2 and 0.4. Our results 
indicated that the treatment effect size would have to exceed 0.45 in order for collider bias to be 
of more concern than confounder bias. Given a zero order correlation between the treatment and 
outcome of 0.20, it seems highly unlikely that the effect size would be of such magnitude. 
 
Conclusions:  
 There are clear potential benefits of empirically appraising the collider-confounder bias 
exchange. At a minimum, it helps to understand and bound the extent to which covariates' may 
serve to amplify or reduce bias and, in turn, mount a more informed evidentiary basis. Such 
appraisals also serve to shift issues surrounding stratification on colliders from a theoretical 
exercise to an empirical one. For instance, in the given example, rather than (not) stratify on 
teachers' reading knowledge solely on the theoretical basis that it is (not) a collider, such 
analyses allow empirical assessment of the variable's impact if it were a collider. 
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Appendix B. Tables and Figures 
Figure 1: Variables forming an M structural relationship with a treatment, Z, an observed 
pretreatment covariate, X, two unobserved and independent pretreatment covariates, U1 and U2, 
and an outcome, Y. The pretreatment covariate X is a collider and may amplify bias when 
assessing the effect of the treatment on the outcome. 
 

 
 
Figure 2:  Stratification on X in Figure 1 produces a spurious relation between Z and Y beyond 
their true relation since U1 and U2 both effect X. 

 
 
Figure 3: X as a confounder of the relationship between Z and Y. 

 
 
Figure 4: Embedded M or bowtie structural relations. Here X is both a confounder and collider. 
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Figure 5: Change in bias ( ) as a function of the treatment-confounder (Z-
X) correlation for several outcome-confounder (Y-X) correlations using a 0.5 effect size. When 
'Change in Bias' is less than zero, it is bias is reduced by stratifying on X. 

 
 
Figure 6: Structural relations among variables given in practical example. We would like to 
assess the association of practice, Prac, on students' reading comprehension achievement, RC, 
where teachers' reading knowledge, TK, is both a confounder and collider as professional 
development, PD, and teachers' general knowledge, GK, are both unobserved. 

 
 
Figure 7: Change in bias ( ) as a function of the treatment-confounder (Z-
X) correlation for several effect sizes for instructional practice example. When 'Change in Bias' is 
less than zero, it suggests that bias is reduced by stratifying on teachers' reading knowledge. 

 
 
 
 

Solid line: ρyx=0 
Long dash: ρyx=0.2 
Dotted dash: ρyx=0.4 
Long-short dash: ρyx=0.6 

Solid line: δ=0.1 
Long dash: δ=0.2 
Dotted dash: δ=0.4 




